259 research outputs found

    The Natural Compound Fucoidan From New Zealand Undaria Pinnatifida Synergizes With the ERBB Inhibitor Lapatinib Enhancing Melanoma Growth Inhibition

    Get PDF
    Melanoma remains one of the most aggressive and therapy-resistant cancers. Finding new treatments to improve patient outcomes is an ongoing effort. We previously demonstrated that melanoma relies on the activation of ERBB signaling, specifically of the ERBB3/ERBB2 cascade. Here we show that melanoma tumor growth is inhibited by 60% over controls when treated with lapatinib, a clinically approved inhibitor of ERBB2/EGFR. Importantly, tumor growth is further inhibited to 85% when the natural compound fucoidan from New Zealand U. pinnatifida is integrated into the treatment regimen. Fucoidan not only enhances tumor growth inhibition, it counteracts the morbidity associated with prolonged lapatinib treatment. Fucoidan doubles the cell killing capacity of lapatinib. These effects are associated with a further decrease in AKT and NFÎşB signaling, two key pathways involved in melanoma cell survival. Importantly, the enhancing cell killing effects of fucoidan can be recapitulated by inhibiting ERBB3 by either a specific shRNA or a novel, selective ERBB3 neutralizing antibody, reiterating the key roles played by this receptor in melanoma. We therefore propose the use of lapatinib or specific ERBB inhibitors, in combination with fucoidan as a new treatment of melanoma that potentiates the effects of the inhibitors while protecting from their potential side effects

    Developing a highly stable Carlina acaulis essential oil nanoemulsion for managing Lobesia botrana

    Get PDF
    The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography–mass spectrometry (GC–MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest

    Developing a highly stable carlina acaulis essential oil nanoemulsion for managing Lobesia Botrana

    Get PDF
    The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography–mass spectrometry (GC–MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest

    Brief communication: Mountain permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography time-lapse measurements

    Get PDF
    Frozen layers within the subsurface of rock glaciers are generally assumed to act as aquicludes or aquitards. So far, this behavior has been mainly defined by analyzing the geochemical characteristics of spring waters. In this work, for the first time, we experimentally confirmed this assumption by executing an infiltration test in a rock glacier of the Southern Alps, Italy. Time-lapse electrical resistivity tomography (ERT) technique monitored the infiltration of 800 L of saltwater released on the surface of the rock glacier; 24 h ERT monitoring highlighted that the injected water was not able to infiltrate into the underlying frozen layer.</p

    Social Preferences, Skill Segregation and Wage Dynamics

    Get PDF
    We study the earning structure and the equilibrium asignment of workers to firms in a model in which workers have social preferences, and skills are perfectly substitutable in production. Firms offer long-term contracts, and we allow for frictions in the labour market in the form of mobility costs. The model delivers specific predictions about the nature of worker flows, about the characteristic of workplace skill segregation, and about wage dispersion both within and cross firms. We shows that long-term contracts in the resence of social preferences associate within-firm wage dispersion with novel "internal labour market" features such as gradual promotions, productivity-unrelated wage increases, and downward wage flexibility. These three dynamic features lead to productivity-unrelated wage volatily within firms.Publicad
    • …
    corecore